Carbon–sulfur–iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation

نویسندگان

  • Shuh-Ji Kao
  • Chorng-Shern Horng
  • Andrew P. Roberts
  • Kon-Kee Liu
چکیده

The importance of the magnetic iron sulfide minerals, greigite (Fe3S4) and pyrrhotite (Fe7S8), is often underappreciated in geochemical studies because they are metastable with respect to pyrite (FeS2). Based on magnetic properties and X-ray diffraction analysis, previous studies have reported widespread occurrences of these magnetic minerals along with magnetite (Fe3O4) in two thick Plio-Pleistocene marine sedimentary sequences from southwestern Taiwan. Different stratigraphic zones were classified according to the dominant magnetic mineral assemblages (greigite-, pyrrhotite-, and magnetite-dominated zones). Greigite and pyrrhotite are intimately associated with fine-grained sediments, whereas magnetite is more abundant in coarse-grained sediments. We measured total organic carbon (TOC), total sulfur (TS), total iron (FeT), 1N HCl extractable iron (FeA), and bulk sediment grain size for different stratigraphic zones in order to understand the factors governing the formation and preservation of the two magnetic iron sulfide minerals. The studied sediments have low TS/FeA weight ratios (0.03–0.2), far below that of pyrite (1.15), which indicates that an excess of reactive iron was available for pyritization. Observed low TS (0.05–0.27%) is attributed to the low organic carbon contents (TOC= 0.25–0.55%), which resulted from dilution by rapid terrigenous sedimentation. The fine-grained sediments also have the highest FeT and FeA values. We suggest that under conditions of low organic carbon provision, the high iron activity in the fine-grained sediments may have removed reduced sulfur so effectively that pyritization was arrested or retarded, which, in turn, favored preservation of the intermediate magnetic iron sulfides. The relative abundances of reactive iron and labile organic carbon appear to have controlled the transformation pathway of amorphous FeS into greigite or into pyrrhotite. Compared to pyrrhotite-dominated sediments, greigite-dominated sediments are finer-grained and have higher FeA but lower TS. We suggest that diagenetic environments with higher supply of reactive iron, lower supply of labile organic matter, and, consequently, lower sulfide concentration result in relatively high Eh conditions, which favor formation of greigite relative to pyrrhotite. D 2003 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum

Monoclinic pyrrhotite (Fe7S8) is widely claimed to carry magnetizations acquired during early diagenesis in anoxic sedimentary environments. In contrast, geochemical literature indicates that pyrrhotite formation is extremely slow below 180 8C, which makes it a highly unlikely carrier of early diagenetic remanences in sediments. This view is confirmed by the occurrence of late diagenetic Fe7S8 ...

متن کامل

بررسی کانه‌زایی و ژئوشیمی کانسار آهن ده‌زمان، (جنوب غرب بردسکن) و مقایسه‌ی آن با کانسارهای آهن نواری

Dehzaman iron deposit is located in southwest of Bardaskan, Khorasan Razavi Province. The area is situated in northeastern Posteh-Badam block based on structural map of Iran. In the deposit, hematite band with 1.5 km long, 6 meters thickness­ and east-west trending is located within Pre-Cambrian metamorphozed sedimentary rocks as conform. Field evidences such as consolidated hematite, present o...

متن کامل

Global geochemical cycles of carbon, sulfur and oxygen.

Time resolved data on the carbon isotopic composition of carbonate minerals and the sulfur isotopic composition or sulfate minerals show a strong negative correlation during the Cretaceous. Carbonate minerals are isotopically heavy during this period while sulfate minerals are isotopically light. The implication is that carbon is being transferred from the oxidized, carbonate reservoir to the r...

متن کامل

Paragenesis and geochornological studies of Asnawa Iron Ore by the isotope and mineral chemistry in Penjween Area, Zagros Suture Zone Kurdistan Region, NE Iraq

   The Asinawa iron ore is located about 3km to the southeast of Penjween town, Sulaimaniya Governorate, Kurdistan Region, Northeastern Iraq near the Iraq-Iran border. The exposed iron ore deposit is about 60 and 400m wide and long respectively. The present study is the re-study of the geology and geochemistry of the Asnawan Iron ore deposit  and concluded that the country rocks are consist of ...

متن کامل

A late diagenetic (syn-folding) magnetization carried by pyrrhotite: implications for paleomagnetic studies from magnetic iron sulphide-bearing sediments

Paleomagnetic, rock magnetic, and sedimentary micro-textural data from an early Miocene mudstone sequence exposed in Okhta River, Sakhalin, Russia, indicate the presence of pyrrhotite and magnetite at different stratigraphic levels. Sites that contain only magnetite have a reversed polarity characteristic remanent magnetization (ChRM) with a low-coercivity overprint, which coincides with the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003